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Abstract
A simple, basic argument is given, based solely on energy–momentum
considerations, to recover conditions under which ar affine or conformal Toda
field theories can support defects of integrable type. Associated triangle
relations are solved to provide expressions for transmission matrices that
generalize previously known examples calculated for the sine-Gordon model
and the a2 affine Toda model.

PACS numbers: 02.30.Ik, 11.25.Hf

1. Introduction

The study of defects, or impurities, within integrable field theory was initiated nearly 15 years
ago by Delfino et al [1]. They pointed out that, with some natural assumptions, it would not
be possible for an integrable system to encompass a defect, such as a delta-function impurity,
allowing both reflection and transmission compatible with a non-trivial bulk scattering matrix
[2]. One may question the assumptions (see, for example, [3]), or analyse those types of defects
that are compatible with the bulk S-matrix, for example, those that are purely transmitting
(within the sine-Gordon model this began with some work of Konik and LeClair [4]). It
is already known from numerical studies of phenomena in the classical sine-Gordon model
that a delta-function impurity is unlikely to be integrable (see, for example, [5]), but it was
pointed out in [6] that another possibility was to allow field discontinuities. At first sight,
this appears to be quite drastic and unlikely to lead anywhere. However, it turned out that
discontinuities could be permitted provided the fields on either side of the discontinuity were
‘sewn’ together appropriately. Moreover, the sewing conditions that guaranteed integrability
were closely related to Bäcklund transformations, a fact that emerged not only in the sine-
Gordon model but also for the subset of affine Toda models defined in terms of the root data
of ar (the sine-Gordon model itself corresponding to a1) [7]. For the sine-Gordon model
itself it was possible to analyse in [8] the relationship between the classical and quantum
theories possessing this type of discontinuity—which are really more akin to ‘shocks’, and
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sometimes referred to as ‘jump-defects’ to distinguish them from delta-function impurities—
thereby providing a framework for the Konik–LeClair transmission matrix and various means
of checking it, including perturbative calculations of the transmission factors for breathers [9].

One purpose of this paper is to provide simple and reasonably general arguments leading
to the sewing conditions previously proposed for the affine Toda field theories. It appears that
the ar models are special and we have not yet found a way to generalize the argument to all the
other models, or indeed to find an alternative. This is a slightly frustrating situation, perhaps
indicating simply a lack of imagination, because in other contexts members of the whole class
of affine Toda models, apart from relatively small details depending on the choice of the root
system, have very similar properties. In passing, it is remarked how in the context of the
conformal Toda models a sequence of defects can transform one model into another. The
illustrative example of this behaviour shows how an ar model can be reduced to an ar−1 model
together with a free massless field. Once this is shown to be integrable (and an argument is
provided in section 3), combinations of defects can be used to construct mixtures of conformal
models. The simplest example of this is the well-known relationship between the Liouville
model and a massless free field.

A second purpose is to make progress towards completing the story that was begun in
[10]. There, besides general remarks that applied to each member of the ar class of affine Toda
models, it proved possible to solve in detail the triangle relations for a2 affine Toda theory
and to describe some of the intriguing properties of the transmission matrix, especially those
surrounding the curiously different character of the interactions between the defect and the two
types of soliton (perhaps better regarded as soliton and anti-soliton). Here, the techniques are
generalized to calculate transmission matrices for the ar affine Toda models and to investigate
some of their properties, particularly with regard to unstable bound states.

2. Energy and momentum revisited

In the bulk, −∞ < x < ∞, an affine Toda field theory corresponding to the root data of a Lie
algebra g is described by the Lagrangian density

Lu = 1

2
(∂μu · ∂μu) − m2

β2

r∑
j=0

nj (e
βαj ·u − 1), (2.1)

where m and β are constants and r is the rank of the algebra. The set of vectors {αj } with
j = 1, . . . , r are the simple roots of g, while α0 is an extra root, defined by α0 = −∑r

j=1 njαj .

The integers {nj } are a set of integers characteristic of each affine Toda model. Each set of roots
is associated with an affine Dynkin–Kač diagram, which encodes the inner products among
the simple roots {αj } including the extra root α0. Finally, the field u = (u1, u2, . . . , ur) takes
values in the r-dimensional Euclidean space spanned by the simple roots {αj }. The affine
Toda models are massive and integrable. However, if the term in the Lagrangian with j = 0
is omitted, then the theory described by the density Lagrangian (2.1) is conformal and called
a conformal Toda field theory. All these models possess a Lax pair representation and they
have been extensively investigated in the past, both classically and in the quantum domain.
For further details concerning the affine Toda field theories, see [11, 12], and the review [13];
for further details on the conformal Toda models see, for instance, [14, 15], and references
therein.

In this paper, a Lagrangian density of the following type:

LD = θ(−x)Lu + θ(x)Lv − δ(x)W, (2.2)
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which couples together two sets of r scalar fields u, v by means of a defect located in x = 0,
will be investigated.

The purpose of this section is to start from first principles to determine for which Toda
field theories there is a set of defect conditions that will allow exchange of energy–momentum
between a defect and the fields on either side of it. The result is a little surprising.

Consider the standard expressions for the energy and momentum carried by the fields u
and v:

E =
∫ 0

−∞
dx

(
1

2
(ux · ux) +

1

2
(ut · ut ) + U(u)

)
+

∫ ∞

0
dx

(
1

2
(vx · vx) +

1

2
(vt · vt ) + V (v)

)
and

P =
∫ 0

−∞
dx(ux · ut ) +

∫ ∞

0
dx(vx · vt ),

where, for the time being, the potentials for the fields u and v remain unspecified.
Differentiating with respect to time, using the equations of motion for the two fields in their
respective domains, and assuming no contributions from x = ±∞ give, one has, respectively,

Ė = ux · ut |x=0 − vx · vt |x=0 (2.3)

and

Ṗ = (
1
2 (ux · ux) + 1

2 (ut · ut ) − U(u)
)
x=0 − (

1
2 (vx · vx) + 1

2 (vt · vt ) − V (v)
)
x=0. (2.4)

Energy–momentum will be exchangeable with the defect provided each of these may be
expressed as time derivatives of functions of the fields evaluated at x = 0. Consider first (2.3)
and suppose, at x = 0, the rather general condition relating space derivatives,

ux = Aut + Bvt + X(u, v), vx = Cut + Dvt + Y (u, v), (2.5)

where A,B,C,D are matrices and X, Y are vector functions of u and v. Then,

Ė = ut · Aut + ut · Bvt − vt · Cut − vt · Dvt + ut · X − vt · Y,

and this will be a total time derivative provided

C = BT , A = −AT , D = −DT , X = −∇uD, Y = ∇vD, (2.6)

where D is also a function of u and v evaluated at x = 0. Under these circumstances, E + D
is conserved.

Next, consider (2.4). A similar computation places further constraints, namely

1 − A2 = BBT , 1 − D2 = BT B, AB + BD = 0 (2.7)

and

(∇uD · ∇uD) − (∇vD · ∇vD) = 2(U − V ), (2.8)

together with the requirement

(A∇uD − B∇vD) = ∇u�, (BT ∇uD − D∇vD) = −∇v�, (2.9)

where � is another function of the fields u and v evaluated at x = 0. Under these circumstances,
P + � is conserved. Provided all these constraints may be simultaneously satisfied energy
and momentum will be conserved once specific contributions coming from the defect itself
are taken into account.

The first expression in (2.7) may be rewritten as follows:

(1 + AT )(1 + A) = BBT . (2.10)

Since A is real and antisymmetric, its eigenvalues are purely imaginary and hence (1 − A) is
invertible. Then

1 = (1 − A)−1B((1 − A)−1B)T , (2.11)

which implies that (1 − A)−1B is orthogonal and B = (1 − A)O, with O ∈ O(r).
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At this stage, if it is further assumed that the various matrices are independent of u and v,
it can be remarked also that the set of boundary conditions of the type (2.5) follows from the
Lagrangian density (2.2) with the choice

W = (
1
2ut · Au − 1

2vt · Dv + ut · Bv + D(u, v)
)
. (2.12)

Making an orthogonal transformation on the field v, this expression may be rewritten as

W = (
1
2ut · Au − 1

2vt · D′v + ut · (1 − A)v + D(u, v)
)
. (2.13)

As a consequence, the third expression in (2.7) reads

A(1 − A) + (1 − A)D′ = 0, (2.14)

which implies D′ = −A and

B = (1 − A), BT = (1 + A) = (2 − B). (2.15)

It is easy to verify that the second equation in (2.7) is automatically satisfied. It is worth
pointing out that an orthogonal transformation on the field v translates simply into a change of
base for the simple roots appearing in the expression of the potential V (v). Note that a similar
result would have been obtained by starting from the second equation in (2.7) and applying
an orthogonal transformation to the field u.

Results (2.14) and (2.15) allow constraints (2.9) to be rewritten in terms of the matrix
A alone. Then, by computing all the second derivatives of � and requiring consistency, the
following additional constraints are obtained:

Alj

∂2D
∂uk∂uj

− (1 − A)lj
∂D

∂uk∂vj

= Akj

∂2D
∂ul∂uj

− (1 − A)kj
∂D

∂ul∂vj

,

(1 + A)lj
∂D

∂vk∂uj

+ Alj

∂2D
∂vk∂vj

= (1 + A)kj
∂D

∂vl∂uj

+ Akj

∂2D
∂vl∂vj

, (2.16)

−Alj

∂2D
∂vk∂uj

+ (1 − A)lj
∂D

∂vk∂vj

= (1 + A)kj
∂D

∂ul∂uj

+ Akj

∂2D
∂ul∂vj

.

Since u, v are Toda-like fields, solutions for the defect potential D should have the form

exp(a · u + b · v),

where a, b are vectors needing to be specified. Using this fact the constraints (2.16) reduce to
the following tensorial expressions:

a ⊗ (−Aa + (1 − A)b) = (−Aa + (1 − A)b) ⊗ a (2.17)

((1 + A)a + Ab) ⊗ b = b ⊗ ((1 + A)a + Ab) (2.18)

b ⊗ (−Aa + (1 − A)b) = ((1 + A)a + Ab) ⊗ a. (2.19)

The first two relations imply (−Aa + (1−A)b) = αa, and ((1+A)a +Ab) = βb, respectively,
with α, β constants. Hence (2.19) forces α = β. Constraints for the vectors a and b are
provided by (2.17) and (2.18), since they may be rewritten as follows:

a = (1 + A)−1(α − A)b, (1 − α2)b = 0. (2.20)

Clearly α2 = 1 since the possibility b = 0 is uninteresting since it also implies a = 0
and a trivial D. Choosing α = 1 and setting a = (1 − A)x/2, b = (1 + A)x/2 the defect
potential D has the form exp ((u · (1 − A) + v · (1 + A))x/2), while for α = −1, setting
a = −b = y/2, the defect potential D has the form exp ((u − v) · y/2). The vectors x, y are
not yet determined.
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Information collected so far implies a general expression for the defect potential, namely,

D =
∑

k

pk e(u−v)·yk/2 +
∑

l

ql e(u·(1−A)+v·(1+A))xl/2, (2.21)

where pk, ql are constant coefficients.
This expression can now be used to investigate the last constraint (2.8), which links the

defect potential to the bulk potentials for the fields u and v. After some algebra the constraint
turns out to be ∑

k,l

pkql(yk · xl) eu·(yk+(1−A)xl)/2+v·(−yk+(1+A)xl)/2 = 2(U(u) − V (v)). (2.22)

Before analysing this expression, note that on the left-hand side of (2.22) there can be no
repeated exponents. In fact, if two exponents were to be the same, given two pairs of vectors
(xi, yi) and (xj , yj ), the following condition would hold

yi + (1 − A)xi = yj + (1 − A)xj , −yi + (1 + A)xi = −yj + (1 + A)xj ,

implying xi = xj and, therefore, yi = yj . Hence, to each different pair of vectors (xi, yi)

and (xj , yj ) there correspond two different exponents on the left-hand side of expression
(2.22). Note also that, in principle, the two bulk potentials U(u) and V (v) could belong to
two different Toda-like models, provided the number r of fields either side of the defect is the
same.

Denote by {αi}, {α′
i} the two sets of simple roots of the Lie algebras associated with the

models on the left and on the right of the defect respectively, together with—if required—the
extended root. Since the left-hand side of (2.22) must be equal to the difference of two
Toda-like bulk potentials, there must exist four sets of vectors {xl}, {x ′

l}, {yk}, {y ′
k} such that

yi = (1 + A)xi, (yi · xi) �= 0, yi ∈ {yk}, xi ∈ {xl} to give eu·xi (2.23)

and

y ′
i = −(1 − A)x ′

i , (y ′
i · x ′

i ) �= 0, y ′
i ∈ {y ′

k}, x ′
i ∈ {x ′

l} to give ev·x ′
i .

(2.24)

Clearly, xi ≡ αi, x
′
i ≡ α′

i . The exponential terms obtained in (2.23) and (2.24) correspond to
pieces necessary for building the two bulk potentials U(u) and V (v). Obviously, they are the
only possibilities allowed in (2.22). This means that any other terms that might arise in (2.22)
because of particular choices of vectors {αl}, {α′

l}, {yk}, {y ′
k} must have coefficients equal to

zero. Note, the possibility of having two exponentials that cancel is ruled out by the fact that
any given exponential may only appear once on the left-hand side of (2.22), as established
above.

To analyse further expression (2.22), consider first the case in which the two sets {αl} and
{α′

l} coincide. For a given yi ∈ {yk}, it could happen that

(yi · αj ) = 0 ∀αj ∈ {αl}j �= i. (2.25)

Hence, it would be possible to write yi = (αi ·αi)wi , where wi is a fundamental highest weight
of the Lie algebra associated with the Toda-like model on both sides of the defect1. Note that
this choice satisfies condition (2.25) and, because of (2.23), implies αj ·Aαi = −αj ·αi,∀j �= i.

As an alternative to condition (2.25), suppose that for yi ∈ {yk} there exists at least one
αj ∈ {αl} such that (yi ·αj ) �= 0 with j �= i. In the most general case, the exponent associated
with the pair (yi, αj ) in (2.22) will be a combination of both fields u and v. However, such a
term is not allowed. A way out is to suppose, in addition, yi = −(1 − A)αj . Then, yi ≡ y ′

j

1 In the present case they coincide since they have the same set of simple roots.
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with y ′
j ∈ {y ′

k}, therefore the resulting exponential is permitted since it coincides with a term
of the bulk potential V (v). Then,

yi = 2αi − (1 − A)αi, yi = −2αj + (1 + A)αj . (2.26)

Multiplying these two expressions by αi and αj , respectively, leads to

(αi · αi) = (αj · αj ) = (yi · αi) = −(yi · αj ). (2.27)

Hence it is possible to write yi = (αi · αi)(wi − wj) where wi,wj are fundamental highest
weights of the Lie algebra associated with the two Toda-like models. Note, this situation can
only occur when the roots αi, αj have the same length.

In summary, expression (2.22) is solved by choosing three sets {xl}, {yk} and {y ′
k} such

that

{xl} ≡ {αl},
where {αl} is a set of simple roots together with—if included—the extended root, and
yi ∈ {yk}, y ′

i ∈ {y ′
k} can have one of the following forms ((a), (c) for yi and (b), (c) for

y ′
i , respectively):

(a) yi = (1 + A)αi = (αi · αi)wi, (αj · Aαi) = −(αj · αi) j �= i (2.28)

(b) y ′
i = −(1 − A)αi = −(αi · αi)wi, (αj · Aαi) = (αj · αi) j �= i (2.29)

(c) yi ≡ y ′
j = (1 + A)αi = −(1 − A)αj = (αi · αi)(wi − wj),

(αj · Aαi) = −(αi · αi) − (αj · αi), (αi · αi) ≡ (αj · αj ) j �= i. (2.30)

Clearly, the possibility (c) (2.30) implies an overlapping among the elements in the two sets
{yk} and {y ′

k}. To decide which form among the possibilities listed above to choose for each
vector in these two sets, it is worth noting that because of (2.23) and (2.24), the following
constraint holds

yi − y ′
i = 2αi. (2.31)

To satisfy this constraint, the only possible combinations for the explicit forms of the pair
(yi, y

′
i ) are

((a), (b)) yi − y ′
i = 2αi = 2(αi · αi)wi (2.32)

((a), (c)) yi − y ′
i = 2αi = (αi · αi)(2wi − wj), (1 + A)αj = −(1 − A)αi, i �= j

(2.33)

((c), (b)) yi − y ′
i = 2αi = (αi · αi)(2wi − wm), (1 + A)αi = −(1 − A)αm, i �= m

(2.34)

((c), (c)) yi − y ′
i = 2αi = (αi · αi)(2wi − wj − wm),

(1 + A)αi = −(1 − A)αj , (1 + A)αm = −(1 − A)αi, i �= j �= m.

(2.35)

Clearly the combination (2.32) can only appear if the root is unconnected to all the others since
there is no simple root that coincides up to scaling with a single fundamental highest weight
except for a1. Such cases will not be considered further here since the Dynkin diagram would
have at least one disconnected spot. In addition, by looking at the other combinations, it is
clear that each node of the Dynkin diagram associated with the set of roots {αl} must have no

6



J. Phys. A: Math. Theor. 42 (2009) 304008 E Corrigan and C Zambon

more than two linked neighbours since αi = (2wi − wm) or αi = (2wi − wj − wm) at most2.
This fact, together with the observation that the possibility (c) (2.30) might only happen when
the roots involved have the same length, implies that the only Toda-like field theories allowed
are those associated with Lie algebras of type ar . This is a surprising result and the only
assumption made to simplify the discussion was to suppose the matrices A,B,C,D were
independent of u and v. Relaxing this considerably complicates the discussion yet might be
necessary to be able to apply the same type of arguments to Toda models based on other root
systems.

From now on consider only the Lie algebra ar . The simple roots together with the extended
(lowest) root can be written in term of the fundamental highest weights wii = 1, . . . , r via

αi = (2wi − wi+1 − wi−1) i = 1, . . . , r, w0 ≡ wr+1 = 0. (2.36)

Consider two affine ar Toda theories on either side of the defect, then a total momentum is
conserved provided {αl} is the set of simple roots of ar together with the extended root, and
the elements of the sets {yk}, {y ′

k} with k, k′ = 0, . . . , r are as follows:

yi = y ′
i−1 i = 2, . . . , r, y1 = y ′

0, y0 = y ′
r . (2.37)

It can be noted that the pairs (y1, y
′
1), (yr , y

′
r ) correspond to the combinations (2.33) and

(2.34), respectively, while all other pairs correspond to the case (2.35). The matrix B may be
written explicitly in terms of the fundamental weights of the algebra ar

B = (1 − A) = 2
r∑

a=1

(wa − wa+1)w
T
a . (2.38)

A formula first obtained by other means in [7].
Note that the matrix B can be replaced by its transpose to provide another solution, which

is represented by

B = (1 − A) = 2
r∑

a=1

wa(wa − wa+1)
T . (2.39)

Then

yi = y ′
i+1 i = 1, . . . , r, y0 = y ′

1, (2.40)

and the pairs (y1, y
′
1), (yr , y

′
r ) correspond to the combinations (2.34) and (2.33), respectively,

while all other pairs correspond to the case (2.35).
Setting pi = σ for all pi ∈ {pk} and qi = 1/σ for all qi ∈ {ql}, the defect potential (2.21)

reads

D =
r∑

k=0

1

σ
e(u−v)·(1+A)αk/2 +

r∑
l=0

σ e(u·(1−A)+v·(1+A))αl/2. (2.41)

Next, consider instead two ar conformal Toda theories on either side of the defect. A solution
to expression (2.22) is represented, for example, by the matrix B as in (2.38) with {αl} the set
of simple roots of ar and the two sets {yk}, {y ′

k} as in (2.37) with k, k′ = 1, . . . , r . In other
words, the vectors y0 and y ′

0 have been omitted. The defect potential is

D =
r∑

k=1

1

σ
e(u−v)·(1+A)αk/2 +

1

σ
e−(u−v)·(1−A)αr/2 +

r∑
l=1

σ e(u·(1−A)+v·(1+A))αl/2. (2.42)

2 Setting (αi · αi) = 2.
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But, from (2.38), it is easy to realize that −(1 − A)αr = (1 + A)α0, where α0 is the extended
root, hence

D =
r∑

k=0

1

σ
e(u−v)·(1+A)αk/2 +

r∑
l=1

σ e(u·(1−A)+v·(1+A))αl/2. (2.43)

Finally, there is another intriguing possibility. Consider, for example, the matrix (2.38). Then
a solution to expression (2.22) is provided by a set {αl} of simple roots of the Lie algebra
ar and two sets {yk}k = 1, . . . , r and {y ′

k} with k′ = 1, . . . , (r − 1), whose elements satisfy
(2.37). This time the vectors y0, y

′
0 and y ′

r are missing. Under these circumstances, the defect
potential reads

D =
r∑

k=1

1

σ
e(u−v)·(1+A)αk/2 +

r∑
l=1

σ e(u·(1−A)+v·(1+A))αl/2. (2.44)

This situation allows the conservation of momentum for a defect system with an ar conformal
Toda field theory on the left of the defect and an ar−1 conformal Toda theory plus a free
massless field, on the right. This case is allowed since all the fields involved are massless. In
fact, it is possible to think of the algebra ar−1 embedded within the ar algebra and the defect
peels off the simple root at one end of the Dynkin diagram. If there was a sequence of r defects
it would be possible to reduce the ar conformal Toda theory to a collection of free massless
fields, a situation that was not noted before.

To clarify this point and verify that the conservation of a total momentum implies
integrability, the Lax pair construction for this specific case will be explored in the following
section.

Before concluding this section, it is worth adding a few words on the possibility that the
two sets {αl} and {α′

l} do not in fact coincide. First of all, it is clear that these two sets cannot
be completely disjoint. In fact, if this were the case, then, in addition to (2.23) and (2.24), for
each yi ∈ {yk} it would also be required that

(yi · α′
i ) = 0, ∀α′

i ∈ {α′
k}. (2.45)

However, the simple roots in {α′
k} are r linearly independent vectors in an r-dimensional space,

hence condition (2.45) could be satisfied only provided yi = 0, which is false.
Actually, even a partial identification among the elements of the sets {αl} and {α′

l} is not
possible. To see this, consider two non-orthogonal simple roots α and β, (α · β �= 0), such
that y = (1 + A) · α and z = (1 + A) · β. In this way they will realize two exponents of the
type (2.23), which are part of the potential U(u). Since the roots are not orthogonal and the
matrix A is antisymmetric, it follows the scalar products (β · y) and (α · z) cannot both be
zero. Suppose (β · y) �= 0. This means that given the vector y there are two simple roots
α and β whose scalar product with y differs from zero. Then, y = (1 + A) · α, yet also
y = −(1 − A) · β. Thus β is also a simple root within the set {α′

l}. In other words, the simple
root β is located each of the sets {αl} and {α′

l}. Bearing in mind that for each simple root there
is always another simple root that is not orthogonal to it, and continuing the previous argument
for each simple root in either set, it is inevitable the two sets of simple roots must coincide.
In addition, it emerges that the possible relations amongst the elements of the sets {yk} and
{y ′

k}—according to the definition (2.23) and (2.24)—are those previously demonstrated for
the ar Lie algebra case (see, for instance, (2.37) and (2.40)).

3. The Lax pair construction

In the bulk, a Lax pair representation for a theory with r field of which (r − 1) represents a
conformal ar−1 Toda theory and the remaining field a free massless one may have the following
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form:

at = 1

2

[
∂xv · H +

r−1∑
i=1

(
λEαi

− 1

λ
E−αi

)
eαi ·v/2

]
+ λEαr

eαr ·v/2,

(3.1)

ax = 1

2

[
∂tv · H +

r−1∑
i=1

(
λEαi

+
1

λ
E−αi

)
eαi ·v/2

]
+ λEαr

eαr ·v/2.

Matrices H are the generators of the Cartan subalgebra of an ar Lie algebra whose simple
roots are αi, i = 1, . . . , r and E±αi

are the generators of the simple roots or their negatives.
Finally, λ is the spectral parameter. Using the Lie algebra commuting relations

[H, E±αi
] = ±αiE±αi

, [Eαi
, E−αj

] = δij H, (3.2)

it can be checked that the Lax pair (3.1) ensures the zero curvature condition

∂tax − ∂xat + [at , ax] = 0, (3.3)

is equivalent to the equation of motion. In the present case,

∂2v = −
r−1∑
i=1

αi eαi ·v. (3.4)

Thus, the r components of the vector v, or r linear combinations of these components—
depending on the base chosen for the simple roots—represent an ar−1 Toda field theory
together with a free massless field.

Consider a defect at x = 0, which links an ar Toda field theory on the left with an ar−1

Toda field theory and a free massless field on the right. The Lax pair describing such a system
may be constructed as explained in [7]. Consider two overlapping regions R< (x < b, b > 0)

and R> (x > a, a < 0) each containing the defect, and in each region define a new Lax pair
as follows:

R< : â<
t = a<

t (u) − 1
2θ(x − a)(ux − Aut − Bvtψ + ∇uD) · H,

â<
x = θ(a − x)a<

x (u),

R> : â>
t = a>

t (v) − 1
2θ(b − x)(vx − BT ut + Avt − ∇vD) · H,

â>
x = θ(x − b)a>

x (v), (3.5)

where a<
t and a<

x are the Lax pair for an ar Toda model (see [7]), while a>
t and a>

x coincide
with the Lax pair (3.1). Applying the zero curvature condition (3.3), the Lax pair (3.5) yields
both the equations of motion for the fields u and v in the two regions x < a and x > b and the
defect conditions at x = 0 and x = b. In the overlapping region a < x < b it implies that the
fields u and v are independent of x throughout the overlap. On the other hand, maintaining
the zero curvature condition within the overlap also requires the two components â<

t and â>
t

to be related by a gauge transformation:

Kt = Kâ>
t − â<

t K. (3.6)

Setting

K = e−H·(Au+Bv)/2K̃ eH·(BT u−Av)/2, (3.7)

such that the matrix K̃ is independent of t, equation (3.6) leads to

K̃H · ∇vD + HK̃ · ∇uD = λ

r∑
i=1

eαi ·(BT u+Bv)/2
[
Eαi

, K̃
]

− 1

λ

r∑
i=1

E−αi
K̃ eαi ·B(u−v)/2 +

1

λ

r−1∑
i=1

K̃E−αi
e−αi ·BT (u−v)/2.

9
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Choosing, as an example, the matrix (2.38), the relation (αiB
T ) = −(αi+1B) holds, and this

allows the above expression to be rewritten as follows:

K̃H · ∇vD + HK̃ · ∇uD = λ

r∑
i=1

eαi ·(BT u+Bv)/2
[
Eαi

, K̃
] − 1

λ
E−α1K̃ eα1·B(u−v)/2

− 1

λ

r∑
i=2

(
E−αi

K̃ − K̃E−αi−1

)
eαi ·B(u−v)/2. (3.8)

Bearing in mind the form of the defect potential (2.44), and assuming the following perturbation
solution for K̃ :

K̃ = I +
∞∑
i=1

ki

λi
, (3.9)

the terms on either side of expression (3.8) must match at each order in λ. It is straightforward
to see that this happens for terms of order λ and λ0 provided k1 = σ

∑r
i=1 E−αi

. However,
the terms at order 1/λ are trickier to analyse. They give

σ

r∑
i=1

(
E−αi

H · ∇vD + HE−αi
· ∇uD

) =
r∑

i=1

eαi ·(BT u+Bv)/2
[
Eαi

, k2
] − E−α1 eα1·B(u−v)/2

−
r∑

i=2

(
E−αi

− E−αi−1

)
eαi ·B(u−v)/2. (3.10)

Making use of the defect potential once more (2.44), and of the explicit expression (2.38)
for the matrix B, it is possible to compare separately the terms in 1/λ proportional to
exp (αi · B(u − v)/2) and exp (αi · (BT u + Bv)/2). The former lead to

−
r∑

ij=1

1

2
(αj · Bαi)E−αi

eαj ·B(u−v)/2 = −
r∑

i=2

(
E−αi

− E−αi−1

)
eαi ·B(u−v)/2 − E−α1 eα1·B(u−v)/2,

(3.11)

where the Lie algebra commutation relations (3.2) have been used. Expression (3.11) is clearly
an identity. The remaining terms of (3.10), which are proportional to exp (αi · B(u − v)/2),
lead to an expression for k2

3. On the other hand, k2 ≡ 0 when evaluated in an (r + 1)-
dimensional representation for which(

Eαi

)
ab

= δaiδbi−1, a, b = 1, . . . , (r + 1). (3.12)

Therefore, in this particular representation a complete expression for the element K̃ is

K̃ = I +
σ

λ

∞∑
i=1

E−αi
. (3.13)

The existence of a Lax pair representation strongly suggests that the system described in this
section is integrable. Note, it is worth emphasizing that a carefully chosen collection of defects
arranged along the x-axis is able to link an ar conformal Toda field theory with r free massless
fields. Or, since the a1 Toda field model is so related to a massless field, the ar Toda model
can be decomposed into a collection of r Liouville models instead, or indeed to a mixture of
p Liouville models and q massless free fields with (p + q) = r .

Note, in the discussion above to solve expression (3.8) it was supposed that K̃ was an
expansion in inverse powers of the spectral parameter λ. In [7] it was pointed out that K̃ could

3 See [7] for details of a similar calculation.
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also be regarded as having an expansion in positive powers of λ. In those circumstances a
slightly different—yet still consistent—relationship between the matrices A,B and the form
of the defect potential D was found. In the present case, by looking at (3.8), it should be noted
that such a possibility is not allowed. In fact, to be able to obtain an alternative solution it
would be necessary to start with a different expression to (3.1) for the Lax pair describing an
ar−1 Toda theory together with a free massless field. The Lax pair representation (3.1) may
be replaced by

at = 1

2

[
∂xv · H +

r−1∑
i=1

(
λEαi

− 1

λ
E−αi

)
eαi ·v/2

]
− 1

λ
E−αr

eαr ·v/2,

(3.14)

ax = 1

2

[
∂tv · H +

r−1∑
i=1

(
λEαi

+
1

λ
E−αi

)
eαi ·v/2

]
+

1

λ
E−αr

eαr ·v/2,

which leads—via the zero curvature condition—to the same equations of motion (3.4).
Proceeding in a similar manner as before, and using the same matrix B (2.38), the analogue
of expression (3.8) is

K̃H · ∇vD + HK̃ · ∇uD = λ

r∑
i=2

(
Eαi

K̃ − K̃Eαi−1

)
e−αi ·B(u−v)/2 + λEα1K̃ e−α1·B(u−v)/2

− 1

λ

r∑
i=1

e−αi ·(BT u+Bv)/2
[
E−αi

, K̃
]
, (3.15)

which can be solved using an expansion in positive powers of λ for the element K̃. It should
be mentioned that to achieve this a slightly different relationship between the matrices A and
B has been used, namely

B = −(1 + A), BT = (−1 + A) = (−2 − B). (3.16)

Expression (3.16) can be obtained by the total momentum conservation analysis of section 2
by looking at the first expression in (2.7). In fact, it can be rewritten in an alternative way with
respect to (2.10) as

(−1 + AT )(−1 + A) = BBT , (3.17)

from which (3.16) follows.

4. Classical ar affine Toda models with a defect

In this section attention will be focussed on the affine Toda model related to the Lie algebra
ar . To summarize briefly, the model is described by the following Lagrangian density:

LD = θ(−x)Lu + θ(x)Lv − δ(x)
(

1
2ut · Au + 1

2vt · Av + ut · Bv + D(u, v)
)
. (4.1)

The bulk Lagrangian densities Lu and Lv are given by (2.1) with all integers nj equal to one,
and (αj ·αj ) = 2. The matrix B = (1−A), which is given by the formula (2.38), and satisfies
the following:

αk · Bαj =
⎧⎨
⎩

2 k = j ,
−2 k = j + 1,
0 otherwise,

j = 0, . . . , r, αr+1 = α0. (4.2)

Finally, the defect potential D is given in (2.41) where σ is the defect parameter. Setting r = 1
the Lagrangian (4.1) describes the sinh-Gordon model with a purely transmitting defect, first
investigated from this point of view in [6].
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The ar affine Toda model with fields and coupling constant β restricted to be real describes,
after quantization, r interacting scalars, also known as fundamental Toda particles, whose
classical mass parameters are given by

ma = 2m sin
(πa

h

)
, a = 1, 2 . . . , r, (4.3)

where h = (r + 1) is the Coxeter number of the algebra. On the other hand, if the fields are
permitted to be complex the model possesses classical ‘soliton’ solutions [16]. Conventionally,
in the description of the complex affine Toda field theory the coupling constant β is replaced
with iβ. It is then easy in (4.1) to switch from the real affine Toda model for the Lie algebra
ar to the complex one. In the bulk soliton solutions interpolate between constant zero energy
field configurations as x runs from −∞ to ∞. The constant solutions are given by v = 2πλ/β,
where λ belongs to the weight lattice of the Lie algebra ar . Each of them is characterized by
a topological charge, which is defined as follows:

Q = β

2π

∫ ∞

−∞
dxux = β

2π
[φ(∞, t) − φ(−∞, t)] , (4.4)

and lies in the weight lattice of the algebra. Explicitly, solutions of this type have the form

ua = − 1

iβ

r∑
j=0

αj ln
(
1 + Eaω

j
a

)
, Ea = eaax−ba t+ξa , ωa = e2π ia/h, a = 1, . . . , r

(4.5)

where (aa, ba) = ma(cosh θ, sinh θ), θ is the soliton rapidity and ξa is a complex parameter,
which, though almost arbitrary, must be chosen so that there are no singularities in the solutions
as the real coordinates x and t vary. Despite the solutions (4.5) being complex, Hollowood
[16] showed that their total energy and momentum are actually real and their masses, at rest,
are given by

Ma = 2hma

β2
, a = 1, 2, . . . , r, (4.6)

where ma are the mass parameters of the real scalar theory (4.3).
For each a = 1, . . . , r there are several solitons whose topological charges lie in the

set of weights of the fundamental ath representation of ar [17]. However, apart from the
two extreme cases, a = 1 and a = r , not every weight belonging to one of the other
representations corresponds to the topological charge of a stationary soliton. The number
ña of possible charges for the representation with label a is exactly equal to h divided by
the greatest common divisor of a and h. By shifting the parameter ξa by 2πa/h the soliton
solution (4.5) changes its topological charge, since such a shift operates a cycle permutation
of the roots (αj → α(j−1)). Such a permutation is equivalent to the application of the Coxeter
element

t (αj ) = srsr−1 . . . s2s1(αj ), si(αj ) = αj − (αj · αi)αi. (4.7)

Therefore, the relevant weights are orbits of the Coxeter element.
When a defect is introduced, some of the properties previously described will change.

For instance, constant field configurations, which are solutions of both the equations of
motion and the defect conditions that follow from the Lagrangian (2.1), are given by
(u, v) = (2πλa/β, 2πλb/β), where the label a and b refer to the specific fundamental
representations to which the weights λa and λb belong (up to translations by roots, since
energy and momentum are invariant under translations of the fields by elements of the root
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lattice). Their energy and momentum are now different from zero and equal to (and for
convenience, σ = e−η)

(Ea,b,Pa,b) = −2hm

β2

[
cosh

(
η − 2(a − b)π i

h

)
,− sinh

(
η − 2(a − b)π i

h

)]
,

(4.8)

a, b = 1, . . . , r.

Note that when the two weights describing the static configurations of the fields u and v

belong to the same representation the energy and momentum will be real4. Note also that
the topological charges carried by a defect constitute a much larger set than the number of
possibilities for stationary solitons themselves.

Another interesting change introduced by the defect is represented by the behaviour of a
soliton solution which travels through a defect. By convention, a soliton (4.5) with positive
rapidity will travel from the left to the right along the x-axis and at some time it will meet the
defect located at x = 0. The soliton v emerging on the right will be similar to u, but delayed.
It is described by

va = − 1

iβ

r∑
j=0

αj ln
(
1 + zaEaω

j
a

)
, (4.9)

where za represents the delay of the soliton travelling through the defect and which, by making
use of the defect conditions, is found to be

za =
(

e−(θ−η) − ieiπa/h

e−(θ−η) − ie−iπa/h

)
, σ = e−η. (4.10)

This delay is generally complex with exceptions being self-conjugate solitons, corresponding
to a = h/2 (with r odd), for which the delay is real. Expression (4.10) has a complex simple
pole at θ = η + i

(
πa
h

− π
2

)
. This means that a soliton with real rapidity can be absorbed by

a defect only if it lies in the self-conjugate representation. This fact was first noted in [6]
in the context of the sine-Gordon model. In [10], by examining the argument of the phase
of the delay (4.10), it was noted that the defect might induce a phase shift in the soliton
that effects a change in the topological charge of the soliton itself, at least provided the shift
lies in a suitable range. It was found that the phase shift can be at most equal to 2πa/h

for a = 1, . . . , (h − 1)/2 (r even), or a − 1, . . . , r/2 − 1 (r odd). While it is −2πa/h for
the corresponding anti-solitons (h − a). This quantity should be compared with the quantity
separating two different topological charge sectors, which is 2π/ña . This suggests that a
soliton in the first representation or an anti-soliton in the corresponding last representation
might convert, at most, to one of the adjacent solitons/anti-solitons within its multiplet as it
passes the defect. However, the scope for jumping to configuration other than adjacent soliton
increases as the representation investigated moves towards representations associated with
more central spots of the Dynkin diagram.

5. A transmission matrix for the ar affine Toda field theories

In [10] the transmission matrix for the a2 affine Toda model was thoroughly investigated.
A complete classification of the infinite-dimensional solutions of the triangular equation—
subject only to a few reasonable assumptions—were obtained. Among them, it was possible
to select solutions relevant for the defect problem, and to complete them with a suitably
chosen (though not unique) overall scalar factor fixing their zero-pole structure in a minimal

4 The parameter η is chosen to be real.
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way. In this section, the aim is to extend those results to the whole ar affine Toda series.
In [10] the different behaviour of solitons and anti-solitons travelling through a defect was
noted. In particular, it was always possible to find a solution for which one group (the a = 1
solitons, for example) seemed to match the strict selection rule mentioned above at the end of
section 4, which concerned the restricted possibilities for a soliton to change its topological
charge, while the other group (a = 2) did not. In a sense this was surprising albeit entirely
consistent with the requirements of the bootstrap. On the other hand, some differences between
solitons and anti-solitons should be expected because of the lack of parity or time-reversal
invariance of the Lagrangian describing the defect conditions. It will be seen that this different
behaviour between solitons and anti-solitons is found in all ar affine Toda models, at least for
solitons and anti-solitons in the first (a = 1) and last (a = r) representations, respectively.

The starting point is the set of ‘triangle relations’ that relate the elements of the
transmission matrix T to the elements of the bulk scattering matrix S [1]. They are

Smn
kl (�)T tβ

nα(θ1)T
sγ

mβ(θ2) = T
nβ

lα (θ2)T
mγ

kβ (θ1)S
st
mn(�), (5.1)

where � = (θ1 − θ2). Note the presence of two types of labels in the transmission matrix
elements. The Roman labels are a finite set of positive integers 1, 2, . . . , d labelling the soliton
states within a representation of dimension d, while the Greek labels represent vectors in the
weight lattice of the Lie algebra ar (it is expected that a stable, basic defect will be labelled
by the root lattice).

The S-matrices describing the scattering of solitons in the ar affine Toda field theory
were conjectured some time ago by Hollowood [18]. Hollowood’s proposal makes use of
Jimbo’s R-matrices [19], which are trigonometric solutions of the Yang–Baxter equation
(YBE) associated with the quantum group Uq(ar). According to the proposal, the solitons
of the model lie in (and fill up) the r different multiplets corresponding for generic q to the
r fundamental representations of the algebra Uq(ar). The number of states in each multiplet
coincides with the number of weights in the corresponding representation. For example, the
S-matrix Sab(�) describes the scattering of two solitons with rapidities θ1 and θ2, lying in the
multiplets a and b, respectively. Hence, it is an interwining map on the two representation
spaces Va and Vb

Sab(�) : Va ⊗ Vb −→ Vb ⊗ Va, Sab(�) = ρab(�)Rab(�) (5.2)

where Rab is Jimbo’s R-matrix and ρab is a scalar function determined by the requirements
of ‘unitarity’, crossing symmetry, analyticity and other consistency requirements (such as
bootstrap relations), which a scattering matrix ought to satisfy [18].

However, in practice it is enough to know explicitly the S11-matrix—also known as
the fundamental scattering matrix—describing the scattering of the solitons in the first
representation, since all the other scattering matrices can be obtained from it on applying
a bootstrap procedure. The representation space V1 of the first multiplet has dimension h and
its states are labelled by weights representation, which can be written conveniently as follows:

l1
j ≡ lj =

r∑
l=1

(h − l)

h
αl −

j−1∑
l=1

αl, j = 1, . . . , h. (5.3)

Abbreviating S11 ≡ S, the non-zero elements of S are given by

S
jj

jj (�) = ρ(�)(qX − q−1X−1),

S
kj

jk(�) = ρ(�)(X − X−1), k �= j,

S
jk

jk (�) = ρ(�)(q − q−1)

{
X(1−2|l|/h) |l=j−k<0

X−(1−2|l|/h) |l=j−k>0

(5.4)
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with

X = x1

x2
, xj = ehγ θj /2, j = 1, 2 q = −e−iπγ , γ = 4π

β2
− 1. (5.5)

(Note, it is assumed 0 < β2 < 4π so that 0 < γ < ∞.)
The scalar function ρ is given by the following expression:

ρ(�) = �(1 + hγ i�/2π)�(1 − hγ i�/2π − γ )

2π i

sinh(�/2 + iπ/h)

sinh(�/2 − iπ/h)

×
∞∏

k=1

Fk(�)Fk(2π i/h − �)

Fk(2π i/h + �)Fk(2π i − �)
, (5.6)

where

Fk(�) = �(1 + hγ i�/2π + hkγ )

�(hγ i�/2π + (hk + 1)γ )
.

Equipped with the S-matrix, it is possible, in principle, to solve the triangle equations (5.2) to
obtain an expression for the transmission matrix T 1 (which will be denoted by T) for solitons
lying in the first representation. As a consequence of topological charge conservation, the
elements of the transmission matrix will have the following form:

T
nβ

iα (θ) = tniα(θ)δβ−li+ln
α i, n = 1, . . . , h, (5.7)

where li , ln are the weights (5.3) and α and β lie in the root lattice. However, when this
expression is inserted into equation (5.2), one rapidly discovers there are many different
solutions. Amongst these there will be the transmission matrix that describes the scattering
of a soliton by a defect, itself characterized classically by the choice of the matrix B (2.38).
Making use of both the experience acquired in this kind of calculation and the results already
obtained for the a2 affine Toda model, it reasonable to claim that the non-zero elements of the
appropriate solution—up to an undetermined scalar function g(θ)—are

T
iβ

iα (θ) = g(θ)Qα·li δβ
α , T

(i−1)β

iα (θ) = g(θ)(t1/hx2/h)δβ−li+li−1
α ,

i = 1, . . . , h, (i − 1) = 0 ≡ h,

where t is a constant parameter and Q = −eiπγ depends on the coupling constant appearing
in the classical Lagrangian density. Setting t = e−hγ� and x̂ = eγ (θ−�), the solution above
can be rewritten in the following neater form:

T
iβ

iα (θ) = g(θ)Qα·li δβ
α , T

(i−1)β

iα (θ) = g(θ)x̂δβ−li+li−1
α ,

i = 1, . . . , h, (i − 1) = 0 ≡ h.
(5.8)

It should be pointed out that suitably designed unitary transformations—of the same type as
those used in [10]—have been used to reduce the number of free constants appearing in the
solution to just the one essential parameter �. Note that solution (5.8) provides a good match
with the classical situation because of the presence of zeros in expected positions, meaning
that a soliton might convert to only one of its adjacent solitons, thereby respecting the classical
selection rules mentioned earlier. Further calculations using the bootstrap—which will not
appear in this paper—suggest that this agreement between the classical and the quantum
situation with regard to selection rules holds also for the other ‘soliton’ representations a with
a = 2, 3, . . . , (h − 1)/2 (r even) or a = 2, 3, . . . , (h/2 − 1) (r odd), but not for the rest,
regarded as ‘anti-soliton’ representations.

The transmission matrices describing the interaction between a defect and the solitons
lying in any of the other representations of the algebra ar could be computed by applying
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a bootstrap procedure, which will be described in the following section. Such a procedure
together with an additional constraint is also used to obtain the overall factor g(θ). The
argument goes as follows. First of all, the extra constraint is provided by the crossing relation
that the solution (5.8) must satisfy, given by

T (h−a)iβ
nα(θ) = T̃ anβ

iα (iπ − θ) a = 1, . . . , r (5.9)

where the matrix T̃ a describes the interaction between the defect and a soliton within the a
representation travelling from the right to the left. In fact, since parity is violated explicitly in
the description of the defect, the matrix T̃ a is expected to differ from the matrix T a describing
solitons travelling from the left to the right. Obviously, the matrix T̃ a itself satisfies a set of
triangular equations albeit with a different, though related, S-matrix. These equations differ
in some details from (5.1), and therefore T̃ a is not amongst its solutions. Note, however, that
matrices T a and T̃ a must be related to each other, and it is natural to suppose the following:

T abβ
aα(θ)T̃ acγ

bβ (−θ) = δc
aδ

γ
α . (5.10)

Note that for the sine-Gordon model, which is the only affine Toda field theory in the ar

series to be unitary, expression (5.10) is equivalent to the unitarity condition since in that
case T̃ (−θ) ≡ (T (θ))†. Thus, by computing the inverse of solution (5.8), it is possible to
obtain the transmission matrix—again up to a multiplicative factor—for the solitons within
the representation r, which are in fact anti-solitons with respect to the solitons in the first
representation. The elements of this matrix read

T r (i+j)β

iα (θ) = x̂jQ−α·k(i+j)

g(θ − iπ)(1 − x̂hQ−1)
δ

β+li−li+j

α , (5.11)

with

i = 1, . . . , h j = 0, . . . , (h − 1) k(i+j) = li + li+1 + . . . + li+j ,

where it must be borne in mind that (i + j) is evaluated mod(h). It should be remarked that the
weights in the representation r are −li , with li given by (5.3). Note that this time, the solution
(5.11) does not possess the expected zeros corresponding to the classical selection rule. Each
anti-soliton may convert into any of the anti-soliton within the same representation, though
the classically allowed transmission remains the most probable.

Comparing the solution (5.11), obtained by applying the crossing relation, with the
solution for the same anti-solitons that will be computed in the following section, it is possible
to constrain the overall function g(θ) and find an explicit expression for it.

6. Bootstrap procedure and the overall factor of the transmission matrix

Consider Dα to be a formal operator representating the defect. Then, it is natural to describe
the interaction between a defect and a soliton within the representation a as follows:

Aa
i (θ)Dα = T ajβ

iα (θ)DβAa
j (θ), (6.1)

where Aa
i is set of operators representing the soliton state i in the representation a. The total

number of states in the representation a is h!/(a!(h− a)!), and, in principle, by making use of
the h states within the first representation, all other states can be built. Hence, expression (6.1)
allows us to construct all transmission matrices simply relying on the T 1 ≡ T -matrix (5.8).
The construction of the soliton states can be elucidated using an iterative process. Consider
the states l2

k in the second representation. Since each weight is l2
i = lj + lk where lj , lk are the

weights (5.3) with j �= k. The corresponding state is given, schematically, by

A2
i{jk}(θ) ≡ 11ci

jkAj (θ − iπ/h)Ak(θ + iπ/h) + 11ci
kjAk(θ − iπ/h)Aj (θ + iπ/h), (6.2)
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where � = i2π/h is the location of the simple pole in the scattering matrix S11 ≡ S

corresponding to a soliton in the second representation. The constants 11ci
jk and 11ci

kj are
the couplings, whose ratio—effectively the only data needed—can be calculated using the
scattering matrix S.

The next representation is the third one, and to construct its states more care must be
taken. The argument goes as follows. The weights associated with each state can be written
as l3

i = lj + lk + lm with j �= k �= m, that is making use only of the weight in the first
representation. Formally, such a state can be formulated as follows:

A3
i{jkm}(θ) ≡ 12ci

jpAj (θ − i2π/h)A2
p{km}(θ + iπ/h) + 12ci

kqAk(θ − i2π/h)A2
q{jm}(θ + iπ/h)

+ 12ci
mtAm(θ − i2π/h)A2

t{jk}(θ + iπ/h), (6.3)

where the coupling ratios can be calculated using the scattering matrix S12. The pole in this
matrix corresponding to a soliton in the third representation is located at � = i3π/h. Note that
an equivalent formulation could have been provided by using the matrix S21. The relevant pole
is still located at � = i3π/h, but the expression for a soliton state in the third representation
would have been

A3
i{jkm}(θ) ≡ 21ci

pjA2
p{km}(θ − iπ/h)Aj (θ + i2π/h) + 21ci

qkA2
q{jm}(θ − iπ/h)Ak(θ + i2π/h)

+ 21ci
tmA2

t{jk}(θ − iπ/h)Am(θ + i2π/h). (6.4)

In fact, given three soliton states Aj(θ1)Ak(θ2)Am(θ3), expression (6.3) describes the case in
which first the solitons described by Ak(θ2) and Am(θ3) combine together to form a soliton
A2

p(θ ′) and subsequently, Aj(θ1) and A2
p(θ ′) form the soliton A3

q(θ
′′). On the other hand,

expression (6.4) corresponds to a situation where the solitons represented by Aj(θ1) and
Ak(θ2) combine first to give a soliton in the second representation, and so on.

Similarly, and with even more care, it is possible to construct all soliton states on
recognizing that the pole corresponding to a soliton in the c representation is located at
� = i(a + b)π/h in the scattering matrix Sab with c = a + b.

Applying (6.1) to the soliton states in the r representation, it is possible to find

T r (i+j)β

iα (θ) = fr(θ)x̂jQ−α·k(i+j) δ
β+li−li+j

α , (6.5)

where

fr(θ) =
r/2−1∏
a=0

g(θ − i(2a + 1)π/h)g(θ + i(2a + 1)π/h), (6.6)

if r is even, and

fr(θ) = g(θ)

(r−1)/2∏
a=1

g(θ − i2aπ/h)g(θ + i2aπ/h), (6.7)

if r is odd. Note that the latter formula holds for r �= 1, since the bootstrap cannot be applied
in the sine-Gordon situation. In that case, one has simply fr(θ) = g(θ). Finally, the solution
(6.5) may be compared with the solution (5.11), to provide a constraint for the scalar function
g(θ). It reads

g(θ + i2π) = g(θ)
(1 + x̂h(−Q)r)

(1 + x̂h(−Q)r+2)
. (6.8)

for which a minimal solution—for all ar affine Toda models—is

g(θ) = ĝ(θ)x̂−1/2

2π
(6.9)
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with

ĝ(θ) = �[1/2 + (r/2)γ − z]
∞∏

k=1

�[1/2 + (hk + r/2)γ − z]�[1/2 + (hk − 1 − r/2)γ + z]

�[1/2 + (hk − r/2)γ − z]�[1/2 + (hk − r/2)γ + z]
,

(6.10)

where

x̂ = eγ (θ−�), z = ihγ (θ − �)

2π
.

The technique adopted in this section can be extended to all representations, and in principal
all transmission matrices T a with a = 1, . . . , r can be found. For the overall scalar function
ga(θ) a compact formula reads

ga(θ) = ĝa(θ)x̂−a/2

2π
a = 1, . . . , r (6.11)

with

ĝa(θ) = �[1/2 + (h − a)γ /2 − z]

×
∞∏

k=1

�[1/2 + (hk + (h − a)/2)γ − z]�[1/2 + (hk − (h + a)/2)γ + z]

�[1/2 + (hk − (h − a)/2)γ − z]�[1/2 + (hk − (h − a)/2)γ + z]
. (6.12)

The �-function outside the product contains an interesting complex pole, which is located at

θa = � − iϑa, ϑa = π(h − a)

h
+

π

hγ
a = 1, . . . , r. (6.13)

Comparing this pole with the pole appearing in the classical delay (4.10), it is possible to
relate the defect parameter σ to the complex parameter �. Given that in the classical limit
1/γ → 0, the identification of the two poles (6.13) and (4.10) requires

� = η +
iπ

2
, σ = e−η.

The complex energy associated with this pole is

Ea = Ma cosh θa = Ma cosh η sin ϑa + iMa sinh η cos ϑa, (6.14)

where Ma is the mass of a soliton in the representation a given by (4.6). Provided (6.14)
enjoys a positive real part and a negative imaginary part, that is

π/2 � ϑa < π, (6.15)

the pole (6.13) corresponds to an unstable bound state.
Consider first a soliton lying in a representation labelled by a � (h/2−1) or a � (h−1)/2,

depending whether h is even or odd. Then, bearing in mind that 1/γ is always a positive—or,
in the classical limit, zero—quantity, condition (6.15) is satisfied provided 1/γ < (h/2 − 1)

or 1/γ < (h−1)/2, respectively. Note that in the classical limit (1/γ → 0) the energy (6.14)
is typically complex and appears to correspond to the energy of an unstable bound state, which
could be identified in the classical version of the model as one of the defects whose energy
is given by (4.8) (taking u = 0, v = 2πλa/β). In fact, only if h is even and a = h/2 does
ϑa → π/2 in the classical limit, meaning the imaginary part of (6.14) disappears leaving a real
part equal to the energy of a soliton a, which moves with rapidity η. This situation corresponds
to the classical possibility for a self-conjugate soliton to be infinitely delayed by the defect.
Finally, if the soliton lies in a representation, a � (h/2 + 1) or a � (h + 1)/2, (meaning it is
an ‘anti-soliton’ according to the convention used so far), again, depending whether h is even
or odd, an unstable bound state appears within a range (a − h/2) � 1/γ < a of the coupling
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that does not include a neighbourhood of the classical limit. In other words, these quantum
unstable states would be disconnected from any phenomenon occurring in the classical models.
That the different representations behave differently in this context appears to compound the
difficulties in comparing the quantum theory of these models with the classical theory; not only
do real states go missing but unstable states appear unexpectedly. Perhaps these phenomena
are related.
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